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Abstract. We consider two independent-Gaussian random variable$p and X; and a
function y chosen in such a way that(Xo) and Xo have the same distribution. Fgre (0, 1)
we find that at least the fourth momentsXy§+ X1 andy (Xo) + X3 are different. We conclude
that nog-deformed convolution product, parallelling the known cages 0 andg = 1, can
exist.

1. Introduction and notation

In 1982 Voiculescu discovered a new notion of statistical independence, which he called
‘freeness’. Two self-adjoint operatoss; and X, on a Hilbert spacé{ are said to be free,

or freely independent, with respect to a state veéterH if for all » € N and all bounded

and measurable functiong, ..., f,: R — R such that if(¢, f;(X;)&) = 0 for all j one

has:

(&, f1(Xi) -+ fu(X;,)6) =0

whereiy, ..., i, is an alternating sequence of 1s and 2s,i.e¢ i, # --- # i,. It turned

out that this notion of independence brought along with it its own convolution product and
its own stable laws. In particular, the unique freely stable law of finite variance is Wigner’s
semicircle law, the free analogue of the Gaussian distribution. Between these two cases,
classical independence and free independence, there exists a natural interpolation indexed
by a parametey € [—1, 1], whereq = O corresponds to freeness afpd= 1 to classical
independence. The connection is formed by 4hkarmonic oscillator. Namely, on the

one hand the Gauss measure coincides with the ground state probability distribution of the
guantum harmonic oscillator. On the other hand, the ground state probability distribution of
S+ S*, whereS is the left shift on/?(N), is precisely Wigner's semicircle law. The operator

S on[3(N) can be viewed as the annihilation operator @f-harmonic oscillator fog; = 0.

It is therefore natural to investigate the genegyaharmonic oscillator and the associated
guantum field, as a candidate for a new, intermediate form of independence and white noise
in qguantum mechanics. In [3] it was shown that thigjuantum field has the functorial
character of a second quantization. In particular, it follows that its ground state probability
distribution, v,, is a stable law for addition of quantum fields: i be a field variable

with distributionv,, dilated to variance? and letX, be a field variable with distribution,

dilated to variancer22 such thatX; andX, areg-independent. TheK1+ X is v,-distributed

with varianceo? + 0. For this reasom, is called theg-Gaussian distribution (see [3, 9]).
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It seems important to further investigate what properties the intermeghedses share with
the standard cases= 0 andg = 1. In particular: is there a goaglconvolution?

SupposeX; and X, are independent random variables in the classical sense. Then the
distributiony of their sum is determined by the distributioag of X; andu, of X»,. Indeed,

w is the convolution product ofi; and u,. If, in the above case, we replace ‘independent’
by ‘free’ (or ‘freely independent’), then agajm is determined by«; and u,. This defines
the free convolution produgi, B u, ;= u of w1 andu,. Free convolution is an interesting
operation involving Cauchy transforms and inverted functions [10, 12].

Let us now consider the same situation for generaFirst we must specify what we
mean by §-independent’ random variable§; and X5, other than the knowg-Gaussian
ones. It seems reasonable to call functionXpfand X, g-independent ifX; and X, areg-
independent-Gaussians. In this paper we show that this runs into the following difficulty:
the distribution of the sum of sugftindependent random variables is no longer determined
by the distributions of the summands. This will be shown by means of a counter-example.

In 1991 Baejko and Speicher introduced thgquantum field (cf [1,2]). Their
construction is based ong@deformation,F, (), of the full Fock space over a separable
Hilbert spaceH. Their random variables are given by self-adjoint operators of the form

X(f)y=a(f)+a(f) feH

where a(f) and a(f)* are the annihilation and creation operators associated with
satisfying theg-deformed commutation relation

a(fa(@)" —qa(®)*a(f) = (f. . 1)

This commutation relation was first introduced by Frisch and Bourret in [5] and various
aspects of it were studied in [4, 6,7, 9].

Forg = 1 the random variableX ( /) and X (g), with f L g, are independent Gaussian
random variables in the classical sense, in the limjt O they become freely independent
in the sense of Voiculescu [12].

The construction of the Fock representation for (1) is described in [1,4], but for
completeness we give the necessary details here. Operatfysand a(f)* are, for all
f € H, defined on the full Fock spacg := C & .-, H®" by:

a(f)*h @ Q@hy '=fOh1® - Qh, neNhy,....,h,eH
and
a(f)Q:=0
a(f)hi®:--&h, :=iqk‘ﬂf,hwhl@~-~fzk~-~®hn i1 @
k=1

where the notation; ®- - - i - - - ® h,, stands for the tensor produei®- - - @hr_1 Q1 ®
- ®h,andQ =190 06 ---. In order to ensure that(f)* is the adjoint ofa(f) for
all f € H, Bozejko and Speicher recursively define an inner producy, on F as

(g1®"'®grmhl®"'®hn)q =8nm(82®®gmaa(gl)hl®®hn)q
n
=Sum Y a0 e i) (2@ @ gu 1 ® I @ By
k=1
We denote the full Fock spacg equipped with this inner product by, (7). By a

well known theorem of Gelfand, Naimark and Segal, known as the GNS construction,
there exists, up to unitary equivalence, only one cyclic representation of the relations (1)
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and (2). ForH = C the above construction reduces g (C) = I2(N, [7],D), where
[n]; =1 —¢q")/(1—q) and p],! = H7=1[j]q with [0],! = 1.

In [2,9] the density of theg-Gaussian distributiony, (dx), of the random variable
Xo = a(fo) +a(fo)* with fo € H and| foll = 1 is calculated. This density is a measure on
R, where it is supported on the intervat2/./1— ¢, 2/./1—¢]. If we denote the:-fold
product]_[z;cl,(l— aq®) by (a; q), and agree onaz, ..., an; q@)n = (@1 @)n - (@m: @n,
thenv, (dx) can be written as

/ 1 ; -
vy (dx) = vy () dv = —/1—¢gssiné(q, qv®, qv% @)oo

where 2 co$ = x/1— ¢ andv = exp(i6).

To state the main theorem of this paper we defiig to be the random variable
a(f1) + a(f1)* for some f1 € H with || 1]l = 1 and (fo, f1) = 0. Then Xy and X;
are g-Gaussian random variables, independent in the sense of quantum probability:

(W, Bo(X0) (X)), = (P, B1(X1)Po(Xo) W)y = (U, Bo(Xo) W), (V, B1(X1) W),
for bounded and measurable functighis 81: R — R. See [1, 8].

Theorem 1 There exists a functior: R — R such thatX, and y(Xo) are identically
distributed butXy + X; andy (Xg) + X1 are not.

The consequence of this theorem is that the distribution of the sum of two or more
random variables depends on the choice of random variables and not solely on the respective
distributions of these random variables. This means thatcanvolution parallelling the
known convolution for probability measures for the cages 0 (cf [10,12]) andg = 1
cannot exist.

In contrast to the above, Nica [11], constructs a convolution law for probability
distributions that interpolates between the known cages 0 andg = 1. Theorem 1
implies that this interpolation does not hold for functionsgeGaussians. In fact this can
also be seen by explicit calculation of the moments of the distributiotfef X7', n,m € N,
using the convolution law Nica suggests and using the structure inherently preggiitin
From the fourth moment onwards the moments differi/om > 1, although they are the
same for the caseg= 0 andg = +1, as they should be.

In the next section we shall prove theorem 1 by constructing the fungtiemd showing
that the fourth moment of the distribution i Xo) + X is strictly smaller then the fourth
moment of the distribution oKy + X1 for g € (0, 1).

2. Construction of 4 and proof of theorem

In [9] we construct the unitary operatds: 7,(C) — L?(R, v,) that diagonalizes the
operatorX = a + a* with a = a(1), such thaty X = TU with T the operator of pointwise
multiplication onL?(R, v,) given by (Tf)(x) = xf(x) for f € L3[R, v,).

Let y be the transformation on{2//1— ¢, 2/+/1— ¢] that changes the orientations
of [-2//1—¢,0] and [ 2//T—¢] in such a way that the distribution, is preserved.
For thisy has to satisfy the differential equation

V) (x) dx + v) (y (x)) dy (x) = 0 (3)
with y(—=2/J/1—¢q) = y(2/</1—g) = 0. Indeed, this leads to
POST<x)=PO<y(T)<x) =Py '(x)<T <2/y/1-9q)
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2/vI-g¢

-2/VT=7¢
~2/yT=7q 0 2/VT=7q

Figure 1. The functiony .

as can be seen by differentiating both sides with respegt tote that the functiory is
its own inverse. Figure 1 shows a typical picture of the shape of the fungtion
Let W be the unitary operator oh?(R, v,) that implements/:

WH@) = fy@)  for f e LR, v,).
This immediately implies tha2 =1 sincey o y = id so W is self-adjoint. If we define
W = U*WU it follows that

y(X) = y(U*TU) = U*y(T)U = U"WTWU = WXW

so W is a unitary and self-adjoint operator 0f, (C) that implementsy on X. Note that

WQ = Q becauseW1 = 1. On the canonical basig;);cy of F,(C) the operato can
be written as

00
Wen = Z Wi €k with woo = 1.
k=0

Now let us choosét{ = C?, fo = (1,0) and f; = (0,1) and let us denote(fy) by ag
anda(f1) by a;. Recall from the introduction thaXq = ag + af and X1 = a1 +aj. In
this setting we need a unitary operatdr on ]-‘q((CZ) that satisfiesy(X) = WXW. To
this end we denote byC C F,(C?) the kernel of the operatary on F,(C?). Then by
constructing an isomorphisii: 7, (C) ® X — F, (C?), the operato¥ can be extended to
W=VWelV*

Proposition 1 The spaceF, (C?) is canonically isomorphic td, (C) @ K.

Proof. From the commutation relation (1) we find thefi(aj)" = P.(ajao), where P, is
a polynomial of degree with constant coefficient,!. In fact, P, is given by

P,(x) = [ @’ x +Lily.-
j=1
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Forn € N, let K, denote the Hilbert subspace})” . Note thatlC, is indeed closed, since
(ag)" acts onkC as a multiple of an isometry, for evegy e K,

Iag)" 112 = (¢, Pu(agao)p)q = [n]g!lell2.
Furthermore/C, L KC,, for n > m, since forg, ¢ € K,
((ap)" @, (ap)"¥)q = ((ag)" ", ag (ag)" ¥y
= {(ag)" " @, Pu(agao)¥),
= [m], Yo, (@0)""¥)q = 0.

Now suppose that somg € F,(C?) is orthogonal to all theC,. We claim that for all
neN
¥ L kerag (4)

from which it follows thaty = 0, since(C?)®" = F(C?) keragtt.

We proceed to prove (4) by induction. Foe= 1 we already have (4) since key= K.
Suppose that (4) holds for some Thenvy e Rana)?, say ¥ = limi_ oo (ag)" ¢r with
o € F,(C?), k e N. Taked ¢ kerag™ and definet := a2 € K, then

(V. 6), = im ((@)"pr. ), = Jim (e, £),

[n]q I|m {9k, Pu(agao)§),

1
— [n]q Jim ((a;)”gok, (ag)"&)y

= [l ]q (¥, (ag)"§)q

becausdag)"¢é € K, L . The claim, (4), follows by induction.
We define an operator: 7, (C) ® K — F,(C?) by:

Vien ® ¢) = (ap)"p.

The operatorV is an isomorphism since its range is dense by the above, and, for all
v, & ek,

(Vien®9), Vien ®8))y

((@)" @, (ag)"&)q
Sn.m (@, Pu(agao)é),
Sn.m[n]g @, )q

= (e, ®¢,en ®E),.

Lemma 1 The operatoW has the following properties:
(i) W is unitary and self adjoint,
(i) ¥ (Xo) = WXoW,
(i) Wo = ¢ for all ¢ € I, in particularWQ = Q,
(iv) W(Xop) = Y poq wia(ad)ke for all ¢ € K.

Proof Property (i) is clear from the definition a¥ since W is unitary and self-adjoint.
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To prove property (ii), note that, fop € K andn € N, V(@* @ N)(e, ® ¢) =
Vienr1®¢) = agVie, ® ), S0V (a* @) V* = aj and V(X 1) V* = Xo. It follows that

WXoW = WV (X @I)V*W
= V(W QI)(X QI)(W QI)V*
=VyX)emv*
=Vy(X M)V* = y(Xo).

Property (iii) is immediate from definitions:
Wo=V(Wel)(eo®¢)=V(o®g)=¢

for all ¢ € K.
The proof of property (iv) is also immediate from definitions:

W (Xop) = W(adp) = V(W M) (e1 @ ) = V(Wer ® @)

o0 o0
= Z wi1V(exr ® @) = Z wii(ad)e.
=1 =1

We now turn to the proof of theorem 1.

Proof.  First we calculate the fourth moment &f + X;. SinceX (fo + f1) is g-Gaussian
with variance 2 we have

(Q. (Xo+ X1)*Q), = V2HUQ. X§Q), = 4] X522
=413 + 11F2212) = 42 +[2],)
=8+4g

a linear interpolation between 8 and 12 fpwarying between 0 and 1. We now turn to the
calculation of the fourth moment of(Xo) + X1:

(Q. (¥ (Xo) + X1)*'Q), = II(¥ (Xo) + X1)*Q|2.
For this we need the following:

Y (X0)?Q = WX3WQ = Q + WfE?

XiQ=Q+ f?

Y(Xo)X1Q = WXoWX1Q = WXoX1Q

oo oo
=Y wa@) X12 =Y wafd® fi
=1 k=1

oo
X1y (X0)Q = XaWXoQ = Y " wu i ® f5*
k=1

from which it is easy to deduce that
Iy (Xo) + X0)?2112 = |(y (X0)* + XDRIZ + 1| (¥ (X0) X1 + X1y (Xo) R (5)
The first term on the right-hand side of (5) is found to be:

Iy (X0)® + XDQU2 = 417 + I /52117 + 1122115 = 44 2[2], = 6+ 24.
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The second term on the right-hand side of (5) yields:

Ity (Xo) X1 + X1y (Xo)QIZ = Y w5 @ fi+ 1@ f5OI15
k=1
=Y wh QI ® AL+ 25 ® fi, 1® f55)9)
k=1
=2 wh(L+q"k],!
k=1

o0
=242 uhig'ld,!
k=1
To prove the theorem it remains to show that

> whalkl' <q  forg e (0.
k=1

To this end, note thaj* < ¢ for k > 2 andg € (0, 1), so

o0

wfl(qk - Q)[k]q! <0
k=1
from which it follows that

o) 00
> wha Ky < gy whlkl! = glWel? = q.
k=1 k=1

We conclude that?, (y (Xo) + Xl)“Q)q < (2, (Xo+ X1)4§2)q for g € (0, 1). (I

The content of theorem 1 is shown graphically in figure 2 where the fourth moment of
Xo + X3 and a numerical approximation of the fourth moment/6X,) + X, are plotted.

12 T

8 | ] } |
0 0.2 0.4 0.6 0.8 1

Figure 2. The fourth moment oy + X1 andy (Xo) + X3 for ¢ € (0, 1).
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