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Abstract. We consider two independentq-Gaussian random variablesX0 and X1 and a
function γ chosen in such a way thatγ (X0) andX0 have the same distribution. Forq ∈ (0, 1)
we find that at least the fourth moments ofX0 +X1 andγ (X0)+X1 are different. We conclude
that noq-deformed convolution product, parallelling the known casesq = 0 andq = 1, can
exist.

1. Introduction and notation

In 1982 Voiculescu discovered a new notion of statistical independence, which he called
‘freeness’. Two self-adjoint operatorsX1 andX2 on a Hilbert spaceH are said to be free,
or freely independent, with respect to a state vectorξ ∈ H if for all n ∈ N and all bounded
and measurable functionsf1, . . . , fn: R → R such that if〈ξ, fj (Xij )ξ〉 = 0 for all j one
has:

〈ξ, f1(Xi1) · · · fn(Xin)ξ〉 = 0

wherei1, . . . , in is an alternating sequence of 1s and 2s, i.e.i1 6= i2 6= · · · 6= in. It turned
out that this notion of independence brought along with it its own convolution product and
its own stable laws. In particular, the unique freely stable law of finite variance is Wigner’s
semicircle law, the free analogue of the Gaussian distribution. Between these two cases,
classical independence and free independence, there exists a natural interpolation indexed
by a parameterq ∈ [−1, 1], whereq = 0 corresponds to freeness andq = 1 to classical
independence. The connection is formed by theq-harmonic oscillator. Namely, on the
one hand the Gauss measure coincides with the ground state probability distribution of the
quantum harmonic oscillator. On the other hand, the ground state probability distribution of
S+S∗, whereS is the left shift onl2(N), is precisely Wigner’s semicircle law. The operator
S on l2(N) can be viewed as the annihilation operator of aq-harmonic oscillator forq = 0.
It is therefore natural to investigate the generalq-harmonic oscillator and the associated
quantum field, as a candidate for a new, intermediate form of independence and white noise
in quantum mechanics. In [3] it was shown that thisq-quantum field has the functorial
character of a second quantization. In particular, it follows that its ground state probability
distribution, νq , is a stable law for addition of quantum fields: letX1 be a field variable
with distributionνq , dilated to varianceσ 2

1 and letX2 be a field variable with distributionνq
dilated to varianceσ 2

2 such thatX1 andX2 areq-independent. ThenX1+X2 is νq-distributed
with varianceσ 2

1 + σ 2
2 . For this reasonνq is called theq-Gaussian distribution (see [3, 9]).
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It seems important to further investigate what properties the intermediateq-cases share with
the standard casesq = 0 andq = 1. In particular: is there a goodq-convolution?

SupposeX1 andX2 are independent random variables in the classical sense. Then the
distributionµ of their sum is determined by the distributionsµ1 of X1 andµ2 of X2. Indeed,
µ is the convolution product ofµ1 andµ2. If, in the above case, we replace ‘independent’
by ‘free’ (or ‘freely independent’), then againµ is determined byµ1 andµ2. This defines
the free convolution productµ1 �µ2 := µ of µ1 andµ2. Free convolution is an interesting
operation involving Cauchy transforms and inverted functions [10, 12].

Let us now consider the same situation for generalq. First we must specify what we
mean by ‘q-independent’ random variablesX1 andX2, other than the knownq-Gaussian
ones. It seems reasonable to call functions ofX1 andX2 q-independent ifX1 andX2 areq-
independentq-Gaussians. In this paper we show that this runs into the following difficulty:
the distribution of the sum of suchq-independent random variables is no longer determined
by the distributions of the summands. This will be shown by means of a counter-example.

In 1991 Bȯzejko and Speicher introduced theq-quantum field (cf [1, 2]). Their
construction is based on aq-deformation,Fq(H), of the full Fock space over a separable
Hilbert spaceH. Their random variables are given by self-adjoint operators of the form

X(f ) := a(f )+ a(f )∗ f ∈ H
where a(f ) and a(f )∗ are the annihilation and creation operators associated withf

satisfying theq-deformed commutation relation

a(f )a(g)∗ − qa(g)∗a(f ) = 〈f, g〉11 . (1)

This commutation relation was first introduced by Frisch and Bourret in [5] and various
aspects of it were studied in [4, 6, 7, 9].

For q = 1 the random variablesX(f ) andX(g), with f ⊥ g, are independent Gaussian
random variables in the classical sense, in the limitq ↓ 0 they become freely independent
in the sense of Voiculescu [12].

The construction of the Fock representation for (1) is described in [1, 4], but for
completeness we give the necessary details here. Operatorsa(f ) and a(f )∗ are, for all
f ∈ H, defined on the full Fock spaceF := C ⊕ ⊕∞

n=1 H⊗n by:

a(f )∗h1 ⊗ · · · ⊗ hn := f ⊗ h1 ⊗ · · · ⊗ hn n ∈ N, h1, . . . , hn ∈ H
and

a(f )� := 0

a(f )h1 ⊗ · · · ⊗ hn :=
n∑
k=1

qk−1〈f, hk〉h1 ⊗ · · · ȟk · · · ⊗ hn n > 1
(2)

where the notationh1⊗· · · ȟk · · ·⊗hn stands for the tensor producth1⊗· · ·⊗hk−1⊗hk+1⊗
· · · ⊗ hn and� = 1 ⊕ 0 ⊕ 0 ⊕ · · ·. In order to ensure thata(f )∗ is the adjoint ofa(f ) for
all f ∈ H, Bożejko and Speicher recursively define an inner product〈·, ·〉q on F as

〈g1 ⊗ · · · ⊗ gm, h1 ⊗ · · · ⊗ hn〉q = δn,m〈g2 ⊗ · · · ⊗ gm, a(g1)h1 ⊗ · · · ⊗ hn〉q
= δn,m

n∑
k=1

qk−1〈g1, hk〉〈g2 ⊗ · · · ⊗ gm, h1 ⊗ · · · ȟk · · · ⊗ hn〉q .

We denote the full Fock spaceF equipped with this inner product byFq(H). By a
well known theorem of Gelfand, Naimark and Segal, known as the GNS construction,
there exists, up to unitary equivalence, only one cyclic representation of the relations (1)
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and (2). ForH = C the above construction reduces toFq(C) ∼= l2(N, [n]q !), where
[n]q = (1 − qn)/(1 − q) and [n]q ! = ∏n

j=1[j ]q with [0]q ! = 1.
In [2, 9] the density of theq-Gaussian distribution,νq(dx), of the random variable

X0 = a(f0)+ a(f0)
∗ with f0 ∈ H and‖f0‖ = 1 is calculated. This density is a measure on

R, where it is supported on the interval [−2/
√

1 − q, 2/
√

1 − q]. If we denote then-fold
product

∏n−1
k=0(1 − aqk) by (a; q)n and agree on(a1, . . . , am; q)n = (a1; q)n · · · (am; q)n,

thenνq(dx) can be written as

νq(dx) = ν ′
q(x) dx = 1

π

√
1 − q sinθ(q, qv2, qv−2; q)∞ dx

where 2 cosθ = x
√

1 − q andv = exp(iθ).
To state the main theorem of this paper we defineX1 to be the random variable

a(f1) + a(f1)
∗ for somef1 ∈ H with ‖f1‖ = 1 and 〈f0, f1〉 = 0. ThenX0 and X1

areq-Gaussian random variables, independent in the sense of quantum probability:

〈9, β0(X0)β1(X1)9〉q = 〈9, β1(X1)β0(X0)9〉q = 〈9, β0(X0)9〉q〈9, β1(X1)9〉q
for bounded and measurable functionsβ0, β1: R → R. See [1, 8].

Theorem 1. There exists a functionγ : R → R such thatX0 and γ (X0) are identically
distributed butX0 +X1 andγ (X0)+X1 are not.

The consequence of this theorem is that the distribution of the sum of two or more
random variables depends on the choice of random variables and not solely on the respective
distributions of these random variables. This means that aq-convolution parallelling the
known convolution for probability measures for the casesq = 0 (cf [10, 12]) andq = 1
cannot exist.

In contrast to the above, Nica [11], constructs a convolution law for probability
distributions that interpolates between the known casesq = 0 and q = 1. Theorem 1
implies that this interpolation does not hold for functions ofq-Gaussians. In fact this can
also be seen by explicit calculation of the moments of the distribution ofXn0 +Xm1 , n,m ∈ N,
using the convolution law Nica suggests and using the structure inherently present inFq(H).
From the fourth moment onwards the moments differ forn,m > 1, although they are the
same for the casesq = 0 andq = ±1, as they should be.

In the next section we shall prove theorem 1 by constructing the functionγ and showing
that the fourth moment of the distribution ofγ (X0)+X1 is strictly smaller then the fourth
moment of the distribution ofX0 +X1 for q ∈ (0, 1).

2. Construction of γ and proof of theorem

In [9] we construct the unitary operatorU : Fq(C) → L2(R, νq) that diagonalizes the
operatorX = a+ a∗ with a = a(1), such thatUX = T U with T the operator of pointwise
multiplication onL2(R, νq) given by(Tf )(x) = xf (x) for f ∈ L2(R, νq).

Let γ be the transformation on [−2/
√

1 − q, 2/
√

1 − q] that changes the orientations
of [−2/

√
1 − q, 0] and [0, 2/

√
1 − q] in such a way that the distributionνq is preserved.

For thisγ has to satisfy the differential equation

ν ′
q(x) dx + ν ′

q(γ (x)) dγ (x) = 0 (3)

with γ (−2/
√

1 − q) = γ (2/
√

1 − q) = 0. Indeed, this leads to

P(0 6 T 6 x) = P(0 6 γ (T ) 6 x) = P(γ−1(x) 6 T 6 2/
√

1 − q)
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Figure 1. The functionγ .

as can be seen by differentiating both sides with respect tox. Note that the functionγ is
its own inverse. Figure 1 shows a typical picture of the shape of the functionγ .

Let Ŵ be the unitary operator onL2(R, νq) that implementsγ :

(Ŵf )(x) = f (γ (x)) for f ∈ L2(R, νq).

This immediately implies that̂W 2 = 11 sinceγ ◦ γ = id so Ŵ is self-adjoint. If we define
W̃ := U∗ŴU it follows that

γ (X) = γ (U ∗T U) = U∗γ (T )U = U∗ŴT ŴU = W̃XW̃

so W̃ is a unitary and self-adjoint operator onFq(C) that implementsγ on X. Note that
W̃� = � becauseW̃1 = 1. On the canonical basis(ej )j∈N of Fq(C) the operatorW̃ can
be written as

W̃en =
∞∑
k=0

wknek with w00 = 1.

Now let us chooseH = C2, f0 = (1, 0) and f1 = (0, 1) and let us denotea(f0) by a0

and a(f1) by a1. Recall from the introduction thatX0 = a0 + a∗
0 andX1 = a1 + a∗

1. In
this setting we need a unitary operatorW on Fq(C2) that satisfiesγ (X) = WXW . To
this end we denote byK ⊂ Fq(C2) the kernel of the operatora0 on Fq(C2). Then by
constructing an isomorphismV : Fq(C)⊗ K → Fq(C2), the operatorW̃ can be extended to
W = V (W̃ ⊗ 11 )V ∗.

Proposition 1. The spaceFq(C2) is canonically isomorphic toFq(C)⊗ K.

Proof. From the commutation relation (1) we find thatan0(a
∗
0)
n = Pn(a

∗
0a0), wherePn is

a polynomial of degreen with constant coefficient [n]q !. In fact, Pn is given by

Pn(x) =
n∏
j=1

(qjx + [j ]q).
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For n ∈ N, let Kn denote the Hilbert subspace(a∗
0)
nK. Note thatKn is indeed closed, since

(a∗
0)
n acts onK as a multiple of an isometry, for everyϕ ∈ K,

‖(a∗
0)
nϕ‖2

q = 〈ϕ, Pn(a∗
0a0)ϕ〉q = [n]q !‖ϕ‖2

q .

Furthermore,Kn ⊥ Km for n > m, since forϕ,ψ ∈ K,

〈(a∗
0)
nϕ, (a∗

0)
mψ〉q = 〈(a∗

0)
n−mϕ, am0 (a

∗
0)
mψ〉q

= 〈(a∗
0)
n−mϕ, Pm(a∗

0a0)ψ〉q
= [m]q !〈ϕ, (a0)

n−mψ〉q = 0.

Now suppose that someψ ∈ Fq(C2) is orthogonal to all theKn. We claim that for all
n ∈ N

ψ ⊥ keran0 (4)

from which it follows thatψ = 0, since(C2)⊗n = F (n)
q (C2) ⊂ keran+1

0 .
We proceed to prove (4) by induction. Forn = 1 we already have (4) since kera0 = K.

Suppose that (4) holds for somen. Thenψ ∈ Ran(a∗
0)
n, sayψ = limk→∞(a∗

0)
nϕk with

ϕk ∈ Fq(C2), k ∈ N. Takeθ ∈ keran+1
0 and defineξ := an0θ ∈ K, then

〈ψ, θ〉q = lim
k→∞

〈(a∗
0)
nϕk, θ〉q = lim

k→∞
〈ϕk, ξ〉q

= 1

[n]q !
lim
k→∞

〈ϕk, Pn(a∗
0a0)ξ〉q

= 1

[n]q !
lim
k→∞

〈(a∗
0)
nϕk, (a

∗
0)
nξ〉q

= 1

[n]q !
〈ψ, (a∗

0)
nξ〉q = 0

because(a∗
0)
nξ ∈ Kn ⊥ ψ . The claim, (4), follows by induction.

We define an operatorV : Fq(C)⊗ K → Fq(C2) by:

V (en ⊗ ϕ) := (a∗
0)
nϕ.

The operatorV is an isomorphism since its range is dense by the above, and, for all
ϕ, ξ ∈ K,

〈V (en ⊗ ϕ), V (em ⊗ ξ)〉q = 〈(a∗
0)
nϕ, (a∗

0)
mξ〉q

= δn,m〈ϕ, Pn(a∗
0a0)ξ〉q

= δn,m[n]q !〈ϕ, ξ〉q
= 〈en ⊗ ϕ, em ⊗ ξ〉q .

�

Lemma 1. The operatorW has the following properties:
(i) W is unitary and self adjoint,
(ii) γ (X0) = WX0W ,
(iii) Wϕ = ϕ for all ϕ ∈ K, in particularW� = �,
(iv) W(X0ϕ) = ∑∞

k=1wk1(a
∗
0)
kϕ for all ϕ ∈ K.

Proof. Property (i) is clear from the definition ofW sinceW̃ is unitary and self-adjoint.
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To prove property (ii), note that, forϕ ∈ K and n ∈ N, V (a∗ ⊗ 11 )(en ⊗ ϕ) =
V (en+1 ⊗ ϕ) = a∗

0V (en ⊗ ϕ), soV (a∗ ⊗ 11 )V ∗ = a∗
0 andV (X⊗ 11 )V ∗ = X0. It follows that

WX0W = WV (X ⊗ 11 )V ∗W
= V (W̃ ⊗ 11 )(X ⊗ 11 )(W̃ ⊗ 11 )V ∗

= V (γ (X)⊗ 11 )V ∗

= V γ (X ⊗ 11 )V ∗ = γ (X0).

Property (iii) is immediate from definitions:

Wϕ = V (W̃ ⊗ 11 )(e0 ⊗ ϕ) = V (e0 ⊗ ϕ) = ϕ

for all ϕ ∈ K.
The proof of property (iv) is also immediate from definitions:

W(X0ϕ) = W(a∗
0ϕ) = V (W̃ ⊗ 11 )(e1 ⊗ ϕ) = V (W̃e1 ⊗ ϕ)

=
∞∑
k=1

wk1V (ek ⊗ ϕ) =
∞∑
k=1

wk1(a
∗
0)
kϕ.

�

We now turn to the proof of theorem 1.

Proof. First we calculate the fourth moment ofX0 +X1. SinceX(f0 + f1) is q-Gaussian
with variance 2 we have

〈�, (X0 +X1)
4�〉q = (

√
2)4〈�,X4

0�〉q = 4‖X2
0�‖2

q

= 4(‖�‖2
q + ‖f ⊗2‖2

q) = 4(1 + [2]q)

= 8 + 4q

a linear interpolation between 8 and 12 forq varying between 0 and 1. We now turn to the
calculation of the fourth moment ofγ (X0)+X1:

〈�, (γ (X0)+X1)
4�〉q = ‖(γ (X0)+X1)

2�‖2
q .

For this we need the following:

γ (X0)
2� = WX2

0W� = �+Wf ⊗2
0

X2
1� = �+ f ⊗2

1

γ (X0)X1� = WX0WX1� = WX0X1�

=
∞∑
k=1

wk1(a
∗
0)
kX1� =

∞∑
k=1

wk1f
⊗k
0 ⊗ f1

X1γ (X0)� = X1WX0� =
∞∑
k=1

wk1f1 ⊗ f ⊗k
0

from which it is easy to deduce that

‖(γ (X0)+X1)
2�‖2

q = ‖(γ (X0)
2 +X2

1)�‖2
q + ‖(γ (X0)X1 +X1γ (X0))�‖2

q . (5)

The first term on the right-hand side of (5) is found to be:

‖(γ (X0)
2 +X2

1)�‖2
q = 4‖�‖2

q + ‖f ⊗2
0 ‖2

q + ‖f ⊗2
1 ‖2

q = 4 + 2[2]q = 6 + 2q.
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The second term on the right-hand side of (5) yields:

‖(γ (X0)X1 +X1γ (X0))�‖2
q =

∞∑
k=1

w2
k1‖(f ⊗k

0 ⊗ f1 + f1 ⊗ f ⊗k
0 )‖2

q

=
∞∑
k=1

w2
k1(2‖f ⊗k

0 ⊗ f1‖2
q + 2〈f ⊗k

0 ⊗ f1, f1 ⊗ f ⊗k
0 〉q)

= 2
∞∑
k=1

w2
k1(1 + qk)[k]q !

= 2 + 2
∞∑
k=1

w2
k1q

k[k]q !.

To prove the theorem it remains to show that
∞∑
k=1

w2
k1q

k[k]q ! < q for q ∈ (0, 1).

To this end, note thatqk < q for k > 2 andq ∈ (0, 1), so
∞∑
k=1

w2
k1(q

k − q)[k]q ! < 0

from which it follows that
∞∑
k=1

w2
k1q

k[k]q ! < q

∞∑
k=1

w2
k1[k]q ! = q‖W̃e1‖2

q = q.

We conclude that〈�, (γ (X0)+X1)
4�〉q < 〈�, (X0 +X1)

4�〉q for q ∈ (0, 1). �
The content of theorem 1 is shown graphically in figure 2 where the fourth moment of

X0 +X1 and a numerical approximation of the fourth moment ofγ (X0)+X1 are plotted.

Figure 2. The fourth moment ofX0 +X1 andγ (X0)+X1 for q ∈ (0, 1).
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[3] Bożejko M, Kümmerer B and Speicher R 1996q-Gaussian processes: non-commutative and classical aspects
Preprint (http://xxx.lanl.gov/abs/funct-an/g604010)

[4] Dykema K J and Nica A 1993 On the Fock representation of theq-commutation relationsJ. reine und
angewandte Math.440 201—12

[5] Frisch U and Bourret R 1970 ParastochasticsJ. Math. Phys.11 364—90
[6] Greenberg O W 1991 Particles with small violations of Fermi or Bose statisticsPhys. Rev.D 43 4111–20
[7] Jørgensen P E T,Schmitt L M and Werner R F 1994q-canonical commutation relations and stability of the

Cuntz algebraPacific J. Math.165 131–51
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